
62

by Alan Cooper

14 Principles
of Polite Apps
Software should respond to your obvious needs, not just
your commands. Use these 14 principles to create
accommodating software.

WHAT YOU NEED
Visual Basic 6.0
lifford Nass and Byron Reeves, professors at Stanford University, study
people’s response to computers. By cleverly repurposing classic experimentsC

in social psychology, they’ve observed some remarkable behavior. They published
their findings in a book titled The Media Equation(see the Resources sidebar) and
demonstrated conclusively that humans react to computers in the same way they
react to other humans.
Nass and Reeves say “people are not evolved to
twentieth-century technology,” and “Modern media
now engages old brains … Consequently, any me-
dium that is close enough will get human treatment,
even though people know it’s foolish and even though
they likely will deny it afterward.” To our human
minds, computers behave less like rocks and trees
than they do like humans, so we unconsciously treat
them like people, even when we “... believe it is not
reasonable to do so.”

In other words, humans have special instincts that
tell them how to behave around other sentient beings,
and as soon as any object exhibits sufficient cognitive
friction, those instincts kick in and we react as though
we were interacting with another sentient human
being. This reaction is unconscious and unavoidable,
and it applies to everyone. With profound and amus-
ing irony, Nass and Reeves used many computer
science grad students, skilled enough to have coded
the test programs themselves, as test subjects. These
subjects were highly educated, mature, rational indi-
viduals, and they all strongly denied being emotion-
ally affected by cognitive friction, even though the
objective evidence was incontrovertible.

Cognitive neuroscientist Steven Pinker, from MIT,
corroborates this thesis in his remarkable book, How
the Mind Works. He says, “People hold many beliefs
that are at odds with their experience but were true in
the environment in which we evolved, and they
pursue goals that subvert their own well-being but
were adaptive in that environment.”

One important implication of the research is
profound: If we want users to like our software, we
should design it to behave like a likeable person. If we
want users to be productive with our software, we
should design it to behave like a good human work
mate. Simple, huh?

Nass and Reeves say that software should be
“polite” because politeness is a universal human
behavioral trait—that is, actions considered polite
might vary from culture to culture, but the trait is
present in all cultures. Products with high cognitive
friction, such as software, should follow this simple
lead and also be polite. The manners of many high-
tech products suggest that as long as you say “Please”
and “Thank you,” it’s okay to be rude, but that is
emphatically not what politeness is all about.

If the software is stingy with information, obscures
its process, forces the user to hunt for common func-
tions, and is quick to blame the user for its own failings,
RESOURCES

•␣ How the Mind Works,
by Steven Pinker
(W.W. Norton & Com-
pany, 1997, ISBN:
0393045358). I abso-
lutely love this wonderful,
eye-opening, literate,
amusing, readable book.
—A.C.)

•␣ The Media Equation:
How People Treat
Computers, Television,
and New Media Like
Real People and Places,
by Byron Reeves and
Clifford Nass (Cambridge
University Press, 1996,
ISBN: 1575860538)

• Accidental Empires:
How the Boys of Silicon
Valley Make Their
Millions, Battle Foreign
Competition, and Still
Can’t Get a Date,
by Robert X. Cringely
(Addison-Wesley, 1991,
ISBN: 0887308554)
www.vbpj.com␣ ␣ ␣ ␣ •␣ ␣ ␣ VBPJ JUNE 1999

Program Design

This article is excerpted
from The Inmates are
Running the Asylum—
Why High-Tech
Products Drive us Crazy
and How to Restore the
Sanity by Alan Cooper
(Macmillan Computer
Publishing USA, 1999,
ISBN: 0672316498).
Reprinted with the
publisher’s permission.

ABOUT THIS FEATURE
the user dislikes the software and has an unpleasant
experience. This happens regardless of “Please” and
“Thank you.” Regardless, too, of how cute, how repre-
sentational, how visually metaphoric, how content-
filled, or how anthropomorphic the software is.

On the other hand, if the interaction is respectful,
generous, and helpful, the user likes the software and
has a pleasant experience. Again, this happens regard-
less of the composition of the interface; a green-screen
command-line interface is well liked if it can deliver
on these other points.

What exactly does it mean for software to be
friendly or polite? What does it mean for software to
behave more like humans? Used car salesmen wear
handsome clothes, smile broadly, and are filled with
impressive information, but does that make them
likeable? Humans are error-prone, slow, and impul-
sive, but it doesn’t follow that software with those
traits is good. Human beings have many other quali-
ties that, although present only conditionally, make
them well suited to the service role. Most software fills
the service role.

Most good software engineers are at a disadvantage
in the politeness realm. Robert X. Cringely says that
programmers are expressive and precise in the extreme,
but only when they feel like it. Their mode of commu-
nication is so precise that they can seem almost unable
to communicate. Call a nerd Mike when he calls him-
self Michael and he likely won’t answer, because you
couldn’t possibly be referring to him.

You can see how the concepts of politeness, or
even humanness, can be a stumbling block when we
ask programmers to interpret such fuzzy concepts.
They struggle with this idea of making computers
behave more like humans, because they see humans as
weak and imperfect computing devices.

I asked my friend Keith Pleas, who is well-known
in the engineering community as an articulate, expert
programmer sensitive to user interface issues, about
making software more human. Keith interpreted
adding humanness as adding imprecision to the inter-
action. He replied:

Would a computer “lie” to you? Would a computer
say you have “about $500” in your checking ac-
count? Would a computer give you a different
answer than it just gave someone else? If we enhance
the humanness, some of the computer-ness will be
reduced, at least in comparison.

Keith’s response is natural from the programmer’s
point of view. True, the computer would never give
you an approximate bank balance, but then the
computer wouldn’t differentiate between taking
1/10th of a second to say you have “about $500” in
your account, versus taking 17 minutes to say you
have “exactly $503.47.” A really polite, more human
program would immediately say you have “about
VBPJ JUNE 1999␣ ␣ ␣ ␣ •␣ ␣ ␣ ␣ www.vbpj.com␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣
$500,” and then inform you it will give you a more
precise figure in a few additional minutes. Then it
would be your choice whether to invest more time for
additional precision. That’s commensurate effort.

Humans have many wonderful characteristics that
make them “polite,” but those definitions are fuzzy
and imprecise. Here’s my list of what improves the
quality of interaction, either with a human or a
high-tech, software-based product rich in cognitive
friction. Polite software:

Polite Software Is Interested in Me.
A friend would ask about me, and
would be interested in who I am and
what I like. He would remember my

likes and dislikes so he could please me in the future.
Any supportive service provider would make an effort
to learn to recognize the face and name of her
customers. Some people appreciate being greeted by
name and some don’t, but everyone appreciates being
treated according to his own personal tastes.

Most software doesn’t know or care who’s using
it. In fact, none of the personal software on my personal
computer seems to remember either me or anything
about me. This is true in spite of the fact that it is
constantly, repetitively, and exclusively used by me
and no one else. Larry Keeley jokes that the automatic-
flush urinal in an airport bathroom is more aware of
his presence than his desktop computer.

Every bit of that software should work hard to
remember my work habits, and particularly, every-
thing that I say to it. To the programmer writing the
program, it’s a just-in-time information world, so
whenever the program needs some tidbit of informa-
tion, it simply demands that the user provide it. But
the thoughtless program discards that tidbit, assuming
it can merely ask for it again if it ever needs it. Not only
is the computer better suited to doing the remember-
ing, but it is impolite for it to forget.

For example, there are 11 people named Dave in
my e-mail program’s name and address directory. I
rarely communicate with most of them, but they
include my best friend Dave Carlick, to whom I send
e-mail all the time. When I create a new e-mail and
type an ambiguous “Dave” in the “To:” block, I
expect the program to have learned from my past
behavior that I mean Dave Carlick. If I want to send

• is interested in me

• is deferential to me

• is forthcoming

• has common sense

• anticipates my needs

• is responsive

• is taciturn about its
personal problems

• is well-informed

• is perceptive

• is self-confident

• stays focused

• is fudgable

• gives instant
gratification

• is trustworthy
63

Program Design

Continued on page 69.
something to another Dave (David Fore, for example) I’ll type in
Dave F, D4, David Fore, or something else to indicate my out-of-
the-ordinary choice. Instead, the program behaves stupidly, always
putting up a dialog box and making me choose which of the 11
Daves I mean. The program just doesn’t care about me, and treats
me like a stranger even though I’m the only human it knows.

Polite Software Is Deferential to Me. Any good
service person defers to her client. She understands the
person she is serving is the boss, and whatever the boss
wants, the boss should get. When a restaurant host

shows me to a table in a restaurant, I consider his choice of table to
be a suggestion, not an order. If I politely demur and choose another
table in an otherwise empty restaurant, I expect to be accommo-
dated immediately. If the host refuses, I am likely to walk out and
choose another restaurant where my desires take precedence over
the host’s.

Impolite software supervises the assumed-to-be-incompetent
human’s actions. It’s okay for the software to express its opinion that
I’m making a mistake, but it is not okay for it to judge my actions.
Likewise, it’s all right for software to suggest that I cannot “Submit”
my entry until I’ve entered my Social Security number, but if I go
ahead and “Submit” without it anyway, I expect the software to do
as it’s told. The very word “Submit” and the concept it stands for
are a reversal of the deferential role. The software should submit to
the user, and any program that proffers a “Submit” button is de facto
impolite. (World Wide Web sites, take notice.)

Polite Software Is Forthcoming. At the airport, if I
ask an airline employee at which gate I can find Flight
79, I would expect him to not only answer my ques-
tion, but to volunteer the extremely useful collateral

information that Flight 79 is also 20 minutes late.
If I order food at a restaurant, it should be obvious that I also

want a knife, fork, and spoon, a glass of water, salt, pepper, and
a napkin.

Most software won’t do this. Instead, it only narrowly answers
the precise questions we ask it, and is typically not forthcoming
about other information, even if it is clearly related to my goals.
When I tell my word processor to print my document, it never tells
me that the paper supply is low or that 40 other documents are
queued up before me, but a helpful human would.

Polite Software Has Common Sense. Although any
good restaurant happily lets you tour its kitchen, when
you first walk in the front door the hostess’ simple
common sense directs you to the dining room instead.

Most software-based products don’t seem to differentiate between
kitchen and dining room, putting controls for constantly used
functions adjacent to never-used controls. You can commonly find
menus offering simple, harmless functions along with deadly,
irreversible ejector-seat–lever functions that should be used only by
trained professionals. It’s like seating you at a dining table right next
to the grill. The earlier “about $500” example is a good illustration
of putting common sense to work in an interface.

Horror stories abound of customers permanently offended by
irrationally rational computer systems that repeatedly sent them
checks for $0.00 or bills for $8,943,702,624.23. Most of the
64
customer service nightmares have gone away through the judicious
isolation of customers from computer systems, but most employees
still have to interact with them. The employees are paid for doing
so, so they tend not to complain too loudly, and they typically have
no one to complain to; the customer service department is normally
not for them.

Polite Software Anticipates My Needs. My assis-
tant knows I require a hotel room when I travel to
another city to a conference. She knows this even
though I don’t explicitly tell her so. She knows that I

like a quiet, nonsmoking room, too, and requests one for me
without any mention on my part. She anticipates my needs.

My Web browser spends most of its time idling while I peruse
various Web sites. It could so easily anticipate my needs and prepare
for them instead of just wasting time and effort. Why can’t it use that
idle time to preload links that are visible? Chances are good that I
will soon ask the browser to examine one or more of those links. It’s
easy to abort an unwanted request, but always time-consuming to
wait for a request to be filled. If the program were to anticipate my
desires by getting prepared for my requests during the time it would
otherwise be idling, waiting for my commands, it could be much
more responsive without needing a faster modem.

Polite Software Is Responsive. When I’m dining in
a restaurant, I expect the waiter to respond appropri-
ately to my nonverbal cues. When I’m engaged in
intense conversation with my tablemates, I expect the

waiter to attend to other duties. It would be inappropriate for the
waiter to interrupt our discussion to say, “Hello, my name is Raul,
and I’ll be your waitperson for the evening.” On the other hand,
when our table conversation has ended and I am swiveling my head
and trying to make eye contact with Raul, I expect him to hustle over
to my table to see what I want.

My computer normally runs in a video mode that gives me 1024-
by-768 pixels on screen. When I do presentations, I am required to
change temporarily to 800-by-600 pixel mode to accommodate the
lower resolution of my video projector. Many of the programs that
I run, including Windows 95, react to the lowered resolution by
changing their window size, shape, and placement on the screen.
However, I invariably and quickly change my computer back to
1024-by-768 pixel mode. But the windows that changed to accom-
modate the lower resolution don’t automatically change back to
their previous settings for the higher-resolution screen. The infor-
mation is there, but the program just doesn’t care about responding
to my obvious needs.

Polite Software Is Taciturn About Its Personal
Problems. In saloons, salons, and psychiatrist offices,
the barkeep, hairdresser, and doctor are expected to
keep mum about their problems, and to show a reason-

able interest in yours. It might not be fair to be so one-sided, but
that’s the nature of the service business. Software, too, should keep
quiet about its problems and show interest in mine. Because comput-
ers don’t have egos or tender sensibilities, they should be perfect for
the role of confidant, but they typically behave the opposite way.

Software is always whining at me with confirmation dialog boxes
www.vbpj.com␣ ␣ ␣ ␣ •␣ ␣ ␣ VBPJ JUNE 1999

Program Design
and bragging to me with unnecessary little status bars. I don’t want
or need to know how hard the computer is working. I’m not
interested in the program’s crisis of confidence about whether to
purge its recycle bin. I don’t want to hear its whining about not
being sure where to put a file on disk. I don’t need to hear the modem
whistling or see information about the computer’s data transfer rates
and its loading sequence, any more than I need information about
the bartender’s divorce, the hairdresser’s broken-down car, or the
doctor’s alimony payments.

Two issues lurk here. Not only should the software keep quiet
about its problems, but it should also have the intelligence, confi-
dence, and authority to fix its problems on its own.

Polite Software Is Well-Informed. On the other
hand, we all need more information about what’s
going on. That same barkeep helps me by posting his
prices in plain sight on the wall, and writing on

the chalkboard what time the pregame party begins on Saturday,
along with who’s playing and the current Vegas spread.

Shopkeepers need to keep their customers informed of issues
that might affect them. I don’t want my butcher to tell me on
November 21 that he is out of Thanksgiving turkeys. I want to know
well in advance that the supply is limited and that I need to place my
order early.

When I search a topic on the Web using a typical search engine,
I never know when link rot will make the engine’s findings useless.
I’ll click on the URL of something I’d like to see, only to get a nasty
“404 Link Not Found” error message. Why can’t the engine
periodically check each link to see if it still exists? If it has rotted
away, the useless entry can be purged from the index so I won’t waste
my time waiting for it.

Programs constantly offer me choices that, for some reason, are
not currently available. The program should know this and not put
them in front of me.

Polite Software Is Perceptive. The concierge at a
hotel I frequent in New York noticed my interest in
Broadway shows. Now, whenever I visit, the con-
cierge—without my asking—puts a handy listing of the

current Broadway shows in my room. She was perceptive enough to
notice my interest, and this allows her to anticipate my desires and
provide me with information I want before I even think about it. It
takes little effort for the concierge to exploit the value of her acute
perceptions, yet it draws me back to this hotel again and again.

Whenever I use an application, I maximize it to use the entire
screen. I then use the Windows Start bar to change from one
program to the other. But the applications I run don’t seem to notice
this fact, especially new ones. I frequently have to tell them to
maximize themselves even though they should be able to see that my
preference is clear and unequivocal. Other users keep their applica-
tions in smaller windows so they can see icons on their desktop. This
is just as easy for software to spot and anticipate.

Polite Software Is Self-Confident. I expect the
service people I interact with to have courage and
confidence. If they see me emerge from the men’s
room with my fly unzipped, I want someone to tell me

quickly, clearly, and unobtrusively before I walk into the ballroom

Continued from page 64.
VBPJ JUNE 1999␣ ␣ ␣ ␣ •␣ ␣ ␣ ␣ www.vbpj.com␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣
to give my speech. It takes some courage to do this, but it’s courage
appreciated. Likewise, if my assistant can’t book me the flight I
want, I expect him to confidently book something close to the one
I want without bothering me with details.

If I tell the computer to discard a file, I don’t want it to come back
to me and ask, “Are you sure?” Of course I’m sure, otherwise I
wouldn’t have asked. I want it to have the courage of its convictions
and go ahead and delete the file.

On the other hand, if the computer has any suspicion that I
might be wrong—which, of course, is always—it should anticipate
my changing my mind and be fully prepared to undelete the file. In
either case, the product should have confidence in its own actions,
and not weasel and whine, passing the responsibility off onto me.

I have often worked on a document for a long time, pressed the
Print button, and then gone to get a cup of coffee while it prints out.
Then I return to find a mindless and fearful dialog box quivering in
the middle of the screen asking me, “Are you sure you want to
print?” This insecurity is infuriating, and the antithesis of polite
human behavior.

Polite Software Stays Focused. When I order salad
in a good restaurant, I get a good salad. In a bad
restaurant, I get the third degree along with it: “Spin-
ach, Caesar, or mixed greens? Onions? Croutons?

Grated cheese? Parmesan or Romano? Full serving or dinner size?
French, Italian, oil and vinegar, or Thousand Island? Dressing on
the side? Served before or after the main course?” Even the most
demanding gourmet just doesn’t care that much about the salad to
be subjected to such a grilling, but interactive systems behave this
way all the time. Adobe’s Photoshop program is notorious for
peppering the user with lots of obnoxious and unnecessary little
questions, each in a separate dialog box.

Impolite software asks lots of annoying questions. Choices are
generally not all that desirable, and being offered them is not a
benefit, but an ordeal.

Choices can be offered in different ways, too. They can be offered
in the way that we window shop. We peer in the window at our
leisure, considering, choosing, or ignoring the goods offered to us.
Alternatively, choices can be forced on us like a hostile interrogation
by a customs officer at a border crossing: “Do you have anything to
declare?” with the full knowledge that we can dissemble as much as
we like, but the consequences for getting caught can be more than
just embarrassing. We don’t know the consequences of the question.
Will we be searched or not? If we know that a search is unavoidable,
we would never lie. If we know there will be no search, we would be
tempted to smuggle in that extra carton of Marlboros.

Polite Software Is Fudgable. When manual infor-
mation processing systems are translated into com-
puterized systems, something is always lost in the
process. Manual systems are typically computerized to

increase their capacity, not to change their functionality. But
manual systems are typically flexible, which is not a function that
can easily be isolated. While an automated order-entry system can
handle millions more orders than a human clerk can, the human
clerk has the ability to work the system.

In an automated system, the ability to work the system disap-
pears. There’s almost never a way to jigger the functioning to give
65

Program Design

Alan Cooper is known as “The Father of Visual Basic” for his
invention of the visual programming interface that became VB.
Reach Alan at alan@cooper.com.

About the Author
or take slight advantages.
In a manual system, when the clerk’s friend from the sales force

calls on the phone and explains that getting the order processed
speedily means additional business, the clerk can expedite that one
order. When another order comes in with some critical information
missing, the clerk can go ahead and process it, remembering to
acquire and record the information later. Typically, this flexibility
is absent in computerized systems.

Computerized systems have only two states: nonexistence or
full-compliance; no intermediate states are recognized or accepted.
Any manual system has an important but paradoxical state—
unspoken, undocumented, but widely relied upon—of suspense,
wherein a transaction can be accepted while still not being fully
processed. The human operator creates that state in his head or on
her desk or in his back pocket.

For example, a digital system needs both customer and order
information before it can post an invoice. While the human clerk
can go ahead and post an order in advance of detailed customer
information, the computerized system rejects the transaction, un-
willing to allow the invoice to be entered without it.

I call this human ability to take actions out of sequence or
before prerequisites are satisfied “fudgability.” It’s typically one of
the first casualties when systems are computerized, and its absence
is a key contributor to the inhumanity of digital systems. It’s a
natural result of the implementation model. The programmers
don’t see any reason to create intermediate states because the
computer has no need for them. Yet humans need to be able to
slightly bend the system.

One of the big benefits of a fudgable system is the reduction of
mistakes. By allowing many small temporary mistakes into the
system and entrusting the human to correct them before they
cause problems downstream, much bigger, more permanent mis-
takes are avoided. Paradoxically, most of the hard-edged rules
enforced by computer systems are imposed to prevent just such
small mistakes. These inflexible rules cast the human and the
software as adversaries, and because the human is prevented from
fudging to prevent big mistakes, he soon stops caring about
protecting the software from really colossal problems. When
inflexible rules are imposed on flexible humans, both sides lose.
It’s invariably bad for business to prevent humans from doing
what they want, and the computer system usually ends up having
to digest invalid data anyway.

Fudgability is one of the few human politeness traits that can be
difficult to build into a computer system. Fudgability demands a
much more capable interface. In order to be fudgable, systems have
to reveal their process to the moderately skilled observer. The clerk
can’t move a form to the top of the queue unless the queue, its size,
its ends, the form, and its position can be easily seen. Then the tools
for pulling a form out of the electronic stack and placing it on the
top must be present. These have to be made as visible as they are in
a manual system, where it can be as simple as moving a sheet of
paper. Physically, fudgability requires extra facilities to hold records
in suspense, but an undo facility has similar requirements. The real
problem is that it admits the potential for fraud and abuse.

Fudging the system can be construed as fraud. It’s technically a
violation of the rules. In the manual world, fudging is tacit and
winked at. It is assumed to be a temporary, special case, and the
fudger will tidy up all such accounts before leaving for the night,
66
vacation, or another job. Certainly, all such examples are cleaned up
before the auditors are allowed in. If this process of temporary rule
suspension were well known, it might encourage people to use the
technique to the point of abuse.

Especially if fudging has been documented in the company
manual, investing it with respectability, those with weaker charac-
ters might see in it a way to avoid doing accurate and complete work,
or they might see in it a way to defraud the company of money. It’s
not fiscally responsible for the company to support fudging.

But fudgability has a powerful effect on the way users regard
the system. All the reasons for not having a fudgable system are
rational and logically defensible—and probably legally defensible,
too. Unfortunately, this idealized state of affairs is simply not an
accurate description of the way the world works. Everyone in all
areas of business utilizes the fudgability of manual systems to keep
the wheels of business—of life—greased and turning easily. It’s
vital that automated systems be imbued with this quality despite
the obstacles.

The saving grace for abuse is that the computer also has the
power to easily audit all of the user’s actions, recording them in
detail for any outside observer. The principle is a simple one: Let the
user do whatever he wants, but keep detailed records of those
actions, so that full accountability is easy.

Polite Software Gives Instant Gratification. Com-
puter programming is all about deferred gratification.
Computers do nothing until you’ve put enormous
effort into first writing a program. Software engineers

slowly internalize this principle of deferred gratification, and they
tend to write programs that behave in the same way. Programs make
users enter all possible information before the programs do even the
tiniest bit of work. If another human behaved that way, you’d
actively dislike them.

We can make our software significantly more polite by assuring
that it works for and provides information to the user without
demanding a lot of up-front effort.

Polite Software Is Trustworthy. Friends establish
trust with one another by being dependable and by a
willingness to give of themselves. When computers
behave erratically and are reluctant to work for users,

no trust is generated. Whereas I trust the bank teller because she
smiles at me and knows my name, I always count my cash at the
ATM because I simply don’t trust the obtuse machine.

Our software-based products irritate us because they aren’t
polite, not because they lack features. As this list of characteristics
shows, polite software is usually no harder to build than impolite
software. It simply means that someone has to envision interaction
that emulates the qualities of a sensitive and caring friend. None of
these characteristics is at odds with the other, more obviously
pragmatic goals of business computing. Behaving with more
humanity can be the most pragmatic goal of all. VBPJ
www.vbpj.com␣ ␣ ␣ ␣ •␣ ␣ ␣ VBPJ JUNE 1999

